Time Interval Averaging: Theory,
Problems, and Solutions

by David C. Chu

"IYIME INTERVAL AVERAGING is an easy and

.. economical way to increase resolution in meas-
uring repetitive time intervals. The idea is quite
simple: the same interval is measured repeatedly
and, given some degree of independence between
measurements, the =1 count quantization error in
each measurement is statistically reduced if the
average measurement value is used to estimate the
interval.

There are many pitfalls in making measurements
this way. My purpose here is to point these out and
describe the approaches used in the 5345A to solve
these problems.

The Folly of Direct Gating

In one all too obvious implementation of time in-
terval averaging, the time interval repeatedly en-
ables a gate through which the clock pulses are
passed and counted. Unfortunately, when the gate
turns on and off, partial clock pulses are generated
and fed to the counting circuits. The average value
obtained this way is as much a function of the re-
sponse of the counter to partial pulses as it is to the
width of the interval. Because this response is diffi-
cult to characterize reliably and even harder to con-
trol accurately, one can attach no meaningful signi-
ficance to the average value so obtained. In general,
for averaging over a large number of measurements,
a biased value, which can differ significantly from
the true time interval value, will be approached. The
difference can be expressed as:
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where T, is the clock period, d is the duty cycle of
the clock in percent, and r is the fraction of the full
clock pulse below which the counter does not re-
spond. The parameter r, which is always between
0 and 1, cannot be controlled precisely.

The use of a synchronizer in HP averaging coun-
ters eliminates the partial pulse problem by reducing
the effective duty cycle (d) to zero.! The decades are
fed full-width pulses under all conditions. The re-
mainder of this article assumes the use of synchro-
nizers.

partial pulse bias
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Non-Averaging Because of Coherence

Another fundamental problem of time interval
averaging occurs when the time intervals are re-
peated at a rate coherent with the clock frequency.
For example, if the rate is a submultiple of the clock
frequency, the occurrence of the time interval rela-
tive to the clock phase is the same for each measure-
ment. Hence, all the measurements read exactly the
same and no statistical averaging takes place. In this
case, the quantizing error for a million measure-
ments is no different from that for a single
measurement.

Coherence, unfortunately, is not limited to sub-
multiples. There are other rates at which only partial
averaging takes place. For example, rates given by
fy/(Q+12), where f, is the clock frequency and Q is a
positive integer, give rise to two alternating discrete
clock phases separated by T, /2. Averaging over a
large number of measurements is no better than aver-
aging over two successive measurements.

In general, we can partition the coherent rates into
classes. A ‘‘class-M" rate results in the time inter-
val's occurring at M discrete phases of the clock. If
one is interested in gaining resolution improvement
by, say, a factor of 100 over the clock period, a
class-M rate where M is under 100 would be unac-
ceptable. A class-M rate is given by:

fI!
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M

where fz(M) is a class-M rate, Q, L, and M are non-
negative integers, and L=<M. Furthermore, L. and M are
co-prime, that is, they have no common factors. For
M = 1, the class of submultiples is generated.

These rates are very numerous. In fact, there is an
infinite number of rates for each class.

fr(M) = M=123.. (2)

Coherence Bandwidth

If one is interested in gaining resolution by a fac-
tor of N, how far must the time interval rate depart
from one of the coherent rates fy to assure proper
averaging? Straightforward analysis of the phase of
the intervals at these frequencies shows that for a
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class-M rate fy, a departure of = Afy, from f; can result
in almost perfect averaging by the factor N, where
Afg is given by:
__fx
R T,MN
The coherence bandwidth is 2Af.
In terms of fractional frequency stability Afg/fg, the
stability that would cause the non-averaging effect

is: A b
fr  foMN

Af (3)

(4)

Conversely, any stability worse than this destroys
the coherence and allows the reduction of measure-
ment quantization error by statistics.

The coherence bandwidth is large for high rates
and low M, and non-averaging can often be observed
without instrumentation. Submultiples (M=1), for
example, give rise to measurements always equal to
or close to whole clock periods, an easily discernible
effect. Partial averaging is more subtle, and the ex-
perimenter is often led to accept a result which does
not give an adequate interpolation factor.

Time Base Random Phase Modulation

Coherence between the time interval pulse train
and the time base clock pulse train can be destroyed
by introducing random phase modulation to either
or both of the trains, allowing meaningful time inter-
val averaging measurements to be made without
regard to the time-interval rate. In the HP 5345A
Counter, phase modulation is deliberately intro-
duced into the clock pulse train when making time
interval average and pulsed RF measurements. The
modulation is random Gaussian noise band-limited
to approximately 3 kHz.

The bias errors caused by the non-averaging ef-
fect are functions of many parameters, including the
time interval rate, the fractional part of the time in-
terval (obtained by subtracting all whole clock
periods from the time interval), and the interval-to-
clock phase relationship. However, the worst case
bias error, Eg, can be expressed simply as a function
of o, the rms value of the phase modulation:

Y
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where Eg is the non-averaging bias error and o is
the rms value of the phase modulation in units of
27 radians or periods of the time base clock.

Fig. 1 shows a plot of bias error Eg versus o in ra-
dians, assuming a 2-ns clock period, and a time
interval given by 2(Q+%2) ns. The bias error de-
creases rapidly with increasing phase modulation.
This indicates that the phase modulation should be
large. However, as will be shown, another type of
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Fig. 1. Coherence bjas error in time interval averaging is
reduced by increasing random phase modulation of the
counter time base

error demands just the opposite.

Modulation Bandwidth

There are also two opposing requirements on the
phase modulation bandwidth. With a large band-
width, time intervals can arrive rapidly and still
maintain relative independence between measure-
ments. On the other hand, for very large modula-
tion bandwidths and relatively long time intervals,
there may be only limited correlation between the
time base at the start edge and at the stop edge, and
the measurement accuracy may be degraded by time
base short-term instability.

Quantitatively, the relationship is as follows. For
a given time interval r seconds, modulation band-
width f_ (Hz), and rms phase modulation & (cycles),
the rms error caused by time base uncertainty in a
single measurement is given by Eqy, where

1/

)]

seconds. For a given time interval, this error is small-
er for a smaller modulation bandwidth. Thus a
small modulation bandwidth is desirable.

With averaging, this error is reduced by the factor
1VN, where N is the number of independent mea-
surements, Not all measurements averaged are in-
dependent if the time interval rate exceeds approxi-
mately twice the modulation bandwidth. In this latter
respect, a large bandwidth is desirable because it
makes full use of all measurements made at higher
rates.

Notice that Ery increases linearly with o, the rms
phase modulation, in contrast with the coherence
error, which decreases with o.

2k, |7

rms value of Eqy = T.,cr[?.[I - @

(6)
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Normal =1 Count Quantization Error

Even if the time interval rate is incoherent and
time base uncertainty error is negligible (such as
when measuring short time intervals), an error is
expected in time interval average measurements be-
cause of the normal =1 count quantization error
in each measurement.* For a given time interval r =
T, (Q+F), where Q is an integer and F a proper frac-
tion, this quantization error can take on only two
fixed values, FT, and (F—1)T,, with probabilities
(1—F) and F respectively. The mean of this distribu-
tion is zero, and the standard deviation (rms value)
is Ty[F(1—F)]"%. The worst case occurs when F is 1/2,
with the corresponding worst case rms quantization
error of Ty2. With proper averaging over N inde-
pendent measurements, this rms error is reduced by
the familiar factor 1/V'N.

Measurement Error Summary

Three types of errors in time interval averaging
have been discussed. They are non-averaging bias
error, time base short-term uncertainty error, and
normal quantization error.

The first error is caused by coherence and can be
as large as one whole clock count. It is independent
of the number of measurements averaged. This error
can be reduced to a negligible level according to
Fig. 1 by randomly phase modulating the time base
clock. In the 5345A Counter, random phase modula-
tion of 0.8 cycle rms minimum allows meaningful
time interval average measurements without regard
to the time interval rate.

The second error is a result of time base uncer-
tainty caused by the random phase modulation in-
troduced. For measuring time intervals less than
7us with the 5345A, this time base error is com-
pletely dominated by the quantization error, and is
therefore negligible. For measuring time intervals
much larger than 7 us, the measurement deviation
is increased by a factor of approximately 2.7 above
that due to the normal +1 count quantization error.
This increase can be nullified by averaging more
intervals.

The third type of error is a result of quantization
to whole numbers in the counting process and is a
function of many parameters. The worst case occurs
when the time interval has a value half way between
whole clock counts, giving an rms error Ty/2. Like
time base uncertainty error, quantization error is re-
duced if averaged over N independent measure-
ments by the factor 1/V'N.

There are other errors in time interval measure-
ments, caused primarily by non-ideal circuit com-
ponents. Examples are start-stop channel mismatch,

" =1 count” is actually 3 misnomer when synchronizers are used, becsuse they make it impossibie
to have an error exactly equal o one count
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Fig. 2. Implementation of time-base-clock random phase
modulation in the HP 5345A. The switch is closed only for
time interval average and pulsed RF measurements.

trigger error, and plain old thermal noise. These
errors are important, but have been excluded from
this discussion, which is limited to those errors that
are unique to the time interval averaging process.

In the 5345A Counter, the phase modulating sig-
nal is derived from noise generated by a zener diode.
The noise is amplified and filtered before being used
to modulate the phase of the clock at 10 MHz with an
rms value of approximately 7°. The frequency multi-
plier chain effectively increases this value by a factor
of 50 to about 350°. The noise voltage level is accu-
rately controlled at all times by a feedback loop. A
block diagram of the implementation scheme is
shown in Fig. 2.

FM versus PM
There are two fundamental reasons why phase
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Fig. 3. Effectiveness of time base random phase modulation
is demonstrated by this time record of the counter reading
during a time interval average measurement. Time intervals
arrive at a rate of 50 MHz + 0.1 Hz, which is nearly coherent
with the 5345A clock frequency of 500 MHz. Without modula-
tion, the reading is either 10 ns or 12 ns. Modufation results in
a true reading of approximately 11 ns.
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modulation (PM) of the clock is superior to fre-
quency modulation (FM) for time interval averaging.
First of all, it is the phase variations that destroy the
coherence. Of course, phase variations are also
generated by FM, but they decrease at 6 dB/octave as
the modulating frequency is increased. Therefore, to
obtain sizeable and rapid phase variations, relatively
large FM signals must be used.

A more fundamental reason is that with FM, the
mean value of the modulating function must be ab-
solutely zero or errors will accumulate as the time

APPENDIX
Time Interval Estimation in the
Presence of Quantization Error

For measunng shar intervals by time interval averaging, only =1 count guan-
tzathon error is prasent. An interesting problem 15 to determine the stahstcs
of estimating the true time interval from the reading obiained irom averaging
N independent measurements. The usual rule-of-thumb estimate gives this
uncartainty as T,/ N where T, is the clock period. A more formal analysis
shows thal the actual rms uncertainty of the sstimate is not so simply stated In
tact, the actual probability density function of the interval can be computed
given the counter reading after averaging N Independent measurements. The
results can be summanzed as follows

An unknown time interval « 1s measured N independent times with a clock
pennﬂ'_uf Te ThE_average value of the measurements is 7 TolP+K/N) where P
and K are integers and O~ K- N Whal is the probabiiity density function of & =
[=~7) gven P. K, and N? Assuming no a prion knowledge of r, maxmum likel-
hood estimation may be used, and the result 15 as follows

Case I: K 1.2.3....N-1. The probability density function P(x). that i5. the
probability density of (r—7) taking on value x, is
p NNy K 2™ Six | Ky© f
URSs = ) (U = i S "
for KT4/N =x<|1-K/NT,
g otherwise
TolN—2K)
The mean of this distribution is NN+ 2) and the standard dewviation is ., where

To [IN-K+1){K-1j]"
TN 2{ N-3 _} 2)
Case Il: K = 0. The probability density function P(x} for this case is
Pix) h;-_rT':' -;}I for D=x=T, i3a)
ang
B LED TR X ,
Pix} 27 i1 T.} for Tosx=0 {3b

The standard deviation of this function is «, where

2 Y

[m-a:m-z-] i *

These results show that the rms uncertanty in estmating the time interval by
the average measurement value s a function of K as weil as of N. The parame-
ter K. always an integer. can be obtained directly from the measurement K/N
is the fractional part of the normalized measurement value (7T, For farge N.
which is typical for most time intarval average measurements, the rms uncer-
tainty of equation 2 is reduced to

- [u ,’;}(QJ}‘*

N

For a given N, the largest «, representing the wors! case estimation uncer-
tainly occurs when K'N is one-hall. The corresponding rms uncerainty is
To2% N. The uncertainty becomes less when KN approaches either 0 or 1
The rule-of-thumb estimate of T, N, therelore, represents twice the wors!
case rms uncertainty for large N. One can further use the knowledge of the frac-
tional part of the measurement vaiue to increase confidence in estimating the
bme interval

i5)

base drifts. Zero mean modulation is difficult to ob-
tain with nonlinear modulation circuits. With phase
modulation, this zero mean value is not a necessity,
because any constant phase offset is effectively can-
celled by the start/stop process.

An Experiment

A simple experiment was performed to illustrate
the effectiveness of phase modulation of the clock.
Time intervals arriving at a rate nearly coherent with
the 5345A clock frequency were measured with and
without modulation. Fig. 3 shows the result.
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